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Aboilract - Th.: present paper e~amines the probkm of the a~ialloadingof a penny-shaped inclusion
Which is embedded in partial bonded contact with an isotropic elastic solid of infinite extent. The
debonded regions correspond to circular areas which are symmetrically and centrally located on
the plane faces l)f the indusion. The mathematical analysis of the problem focusses on the evaluation
of the a.,ial stillness of the partially debonded inclusion. The mi~ed boundary value probkm
associated with the inclusion problem can be reduced to the solution of a single Fredholm integral
e4uation of the secl)nd-kind. A numerical solution of this integral e4uation is used to generate the
stlflncss estimates fllr the a~ially Il'aded inclusion.

I. INTRODUCTION

The class of prohlems which deal with the stress analysis of clastic bodies reinforced with
inclusions which arc either rigid or elastic. is of importance to the study of muiltiphase
composite materials. Detailed accounts of studies related to inclusion prohlems in classical
elasticity arc gin:n hy Fshelhy (1% I). Willis (llJX I). Walpole (llJX I) and Mura (llJX I). Flat
disc shaped inclusions arc a particular limiting case of the general class of three-dimensional
ellipsoidal and splll:roidal inclusions. The reinforcement of an elastic solid hy disc-shaped
indusions enhances its stifrness and strength characterislics. A study hy Wu (Il)()()).

indicated thaI disc-shaped indusions give hy far lhe most signilkant increase in the clreetive
modulus of multiphase composites. Several investigators have therefore examined the disc
inelusion prohlclll related to an elastic medium of inlinite extent in order to examine
the influence of clrccts such as transversc isolropy of the medium. annular and elliptical
configuration of indusion. flexural behaviour of the inclusion. interaction with nuclei of
strain. influences of traction-free surfaces. constrained surfaces and bi-material regions.
The particular geometry of the disc inclusion enables the study of these problems by appeal
10 mixed boundary value prohlems related to a halfspace region. A comprehensive account
of the disc inclusion prohlem in classical elasticity theory will be presented in a forthcoming
artide hy Sclvadurai (llJXlJ).

In the majority of studies relating to inclusion problems it is assumed that perfect
continuilY or a honded contact exists at the inclusion-elastic medium interface. Rese~lrches

of Ashby (1%6). McClintock (1l)6~).Argon I!( al. (llJ75) and others suggest that cavities
can nucleate at the interfaces by tearing of the inclusion away from the ductile matrix or
hy cracking of a non-deformable inclusion. The category of problems which relate to
partially bonded three-dimensional inclusions embedded in clastic media appear to have
received only limited attention. Studies of flaws located at the boundary ofcylindrical clastic
inclusions embedded in elastic media with differing properties. arc given by England (1966).
Other classes of problems in which imperfect contacts arc modelled by distributions of
dislocations have been investigated by Rullough and Bilby (1956), Dundurs (1967) and Lin
and Mum (llJ73). References to further studies arc also given by Mura (19SI). [n the
context of disc inclusion problems. Hunter and Gamblen (1974) and Keer (1975) have
investigated prohlems related to disc inclusions in which complete debonding occurs at a
plane face. In this particular paper we examine an axisymmetric problem related to a disc
inclusion in which symmetric debonding exists over a circular region. Such delaminations
can be induced by thickness non-uniformities of the disc inclusion. The debonded inclusion
is loaded by a central force which acts in the axial direction. Also it is specifically assumed
that the axial loading of the inclusion docs not lead to the re-establishment of contact in
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thl: lkoondl:d rq;lons. Alte:rnativl:ly. It may bl: assuml:d that the dastil: ml:dium is subjl:ctl:d
to a hl>mogl:nl:l1 us statl: of tl:nsill: strl:ss normal to thl: planl: of thl: Inclusion. This statl: of
strl:ss can bl: assignl:d in such a way that the: axial loading of the inclusion does not kad to

thl: re-I:stablishment of contact at the debonded region. The analysis focussl:s on the
evaluation of thl: axial load -dispLtceml:nt relationship for the debonded inclusion. [n thl:
study of multiphasl: composite material behaviour. the reinforcing inclusions invariably
intl:ract with othcr dd'ects such as cracks. dislocations. dipoll:s, centrl:s of dilatation, etc.
to alta th..: Il>cal enl:rgy fIeld in the vicinity of the inclusion. This in return affects the
propl:rtil:s of the solid. Thl: solution developed in this paper for the directly loadl:d
d..:bomkd inclusion can be used in conjunction with Betti's reciprocal theorem to study the
intaaction of th..: inclusion with oth..:r nuclei of strain and external forces. A Hankel
transform d..:wlopm..:nt l>f the gon:rning equations is used to formulat..: the reduced mixed
boundary value problem associated with the disc inclusion. Thl: system ofintegrall:quations
genl:rated by the mixed houndary conditions is reduccd to a single Fredholm intcgral
I:quation of the second-kind. This integral equation is solved in a numerical fashion. to
evaluate the loaddisplaccment relationship for the dl:bondl:d disc inclusion.

For the analysis of the axisymmctric problem related to the axial loading of the partially
dd)onlkd rigid disc inclusion we cmploy strain potential approadl proposed hy Love
(1927). [n till.: ahscnce of hody forces. the s,llution of thc displaccmcnt cquations of
equilihrium can he represented in terms of a hi-harmonic function ell(r, :). i.c.

( I)
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is the axisYlllll1ctric flll'm of Laplace's opl:rator rckrrl:d to thl: cylindrical polar cOlll'dinatc
system. The componenls of the displacement vector u and the Cauchy stress tensor (1 referrt:d
to the cylindrie;t1 pohlr coordinate system can be expressed in terms of the daivatives of
(I). \Ve have

2(//1, = 0)

(4)

where (i and \' arl: thl: linear dastic shear modulus and Poisson's ratio, respl:ctively.
Similarly. the components of the stress tensor arc given

(5)

(6)

(7)
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W~ examin~ tlH: prohlem of a p~nny-shaped rigid inclusion of radius h whicll is
emhedded in honded contact over th~ region a ~ r ~ h wher~ a is th~ radius of th~ sym
metrically placed lkhonded r~gions Wig. I). The inclusion is displaced hy an amount ~ in
the =-dir~ction. The force required to initiate this displacement is denoted hy 1'. When the
d~honded r~gions remain so during the application of 1'. it can b~ shown (s~~ App~ndixA)
that th~ particular mod~ of deformation induces a stat~ of asymmetry about th~ ptan~

= = O. As a cons~qu~nce. w~ can r~strict th~ analysis to th~ examination of a single halfspac~

r~gion occupying = ;:-, O. Th~ rel~vant mix~d boundary conditions associat~d with th~

inclusion problem ar~ as follows.

1/,(r.O) = Ll; ll~r~h (lJ)

1/,(r,O) = 0; a ~ r < 'Xi ( 10)

(1::(r,O) = 0; O<r<a (II)

IT::(r.O) = 0; h<r<co ( 12)

IT,,(r.O) = 0; 0< r < a. ( 13)

For the integral equation formulation of the mixed boundary value prohlem posed by (9)

(13) we seek solutions of (I) which can he obtained by a Hankel transform development
of the basic ditTerential equation (I). Furthermore the displacements and stress fields
derived from <I>(r. =) should satisfy the regularity conditions u -+ O( I! R) and (1 -+ O( I! R~) as
R(= [r~+=~l' 1) -+ XJ.

Following Sneddon (1977), it can be shown that the relevant solution is given by
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<1I(r.=) = r£ ~[A(~)+=B(~)l e ;: ll}(~r) d~
....,11

( I~)

where lo( ~rl is the zeroth-order Bessel function llf the first hand. A (~l and Bl~) arc the
arbitrary functions which are to be determined by satis(ving the mixcd boundary conditions
(9)-( 13). Employing the integral represcntation for <1I(r. =l given by (I~) in the exprcssions
for u and (J it can bc shown that the mixed boundary conditions (9)-( 13) can be reduced
to the following system of integral equations.

Ho[~~ :~A(~)+(1-21')B(~):;r] = 0; 0 < r < a

where 1I,.L(/(~l; rl. (1/ = O. I) is the Hankel transform of order II which is dclined by

II,.L(/(~); rl = f' ~.cJ(~)l,,(~r) d~
II

( 15)

( 16)

( 17)

( IX)

( 19)

(20)

where l,,(~r) is the 11th order Bessel function of the first kind. To further reduce the systelll
of integral equations (15) (19) we make the assumption that as a -> () we should recover.
from the solution developed. the appropriate result for the problem of the axial loading of
the completely bonded rigid disc inclusion. We introduce functions M(~) and N(~) such
that

I
A(~) = 1 I -1: -(1-21')M(~)+NW:

-( -I')l;
(21 )

Using these substitutions. the system of integral equations (15) (19) can be reduced ttl the
1'0rill s

4(/':\(1-1')

(3 -~I')
a~r~h (23)

lIo[N(~); r] = 0; 0 < r < a

Ho[N(~);rl =0; h<r< x

1I1[{(I-21')N(~)-MW}; r] = 0; {) < r < a.

Introduce an auxiliary function (p(t) such that

(24)

(25)

(26)

(27)
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,.~

M(~) = I ¢(t) cos (';t) dr.
-,"

Substituting (28) into (24) we note that

f~ <b(/) dl = O.

"

Integrating (27) it can be shown that

f{,,[~ 1[(l-2\')N(~)-M(~):;rl=CI; O<r<a

7S7

(28)

(29)

(30)

where C is a constant. By using the substitution (28), the equation (30) can be reduced to
an integral equation of the Abel type:

f' <b{t) dl fr • • •

[
C ·~ll-~ = -C1+(1-2\') N(.;).1,,(.;r) d.;; () < r < a.

" r -I "

The solution of (J I ) can be written as

2 2(1 2\')f'
t/l{t) :::: -- Ct + N(~) cos (;1) d~; () < t < a.

n: It"

(31)

(32)

The value or the constant C 1 can be determined by making usc of (32) and the consistel1l:y
condition (29) ; consequently, the compkte expression ror (32) takes the f()fIll

2 [f' { sin (1I")} J(/l(t) = (I - 21') N(~) cos (~f) - " ". d'; ; 0 < I < a.
n:" a..

(33)

We now examine the system or triple integral equations defined by (23), (25) and (26).
Introdll\:e an auxiliary flllll.:tion 9(r) stich that:

f' ~N(~)J,,(~r) d'; = q(r); 1I < r < h.
II

(34)

Using the properties of H;tnkel transforms we can obtain an integral expression for N(~):

as a result, (23) can be expressed in the rorm

('/. (1-21')J~'

J /If/(/I) L(u.r) d/l + " . M(~)Jo(~r) d; =
" (. -41') II

where the operator L(u, r) is dclined by

4G6(1-\')
(3-41') ,

(35)

(36)

and min (It, r) denotes the minimum values or It arid r. The !irst integral in (35) can be
written as:
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ih Im'ft (v,,1 i' IV Ih f'du ds = du ds+ du ds
a 0 lJ () r f)

= (' dsi
h

du+f4 ds rio duo
~ s 0 ~

(37)

Using the properties of these integrals and observing that

f
X; •• f4 4>(u) du
M(~)Jn(.:;r) d..; = [! !] I.!

o n r -u

we obtain. from (35). the following

(38)

_ 2JtG<i( I - v) _ ~ (l - 2v) r" 4>(u) du . a ~ r ~ h (39)
(3-4v) 2 (3-4v)Jn V-u!]Ii2'

Introduce the substitution

i/o IIY(U) du .

. ['-'--- -"']T" = 7(.1'); a ~ s ~ h.• u· -.I'" ,"
(40)

NOh: that (40) is an integral equation of the Ahd type. the solution of which takes the form

2 d ih
sT(s) ds

g(u)=---- -,-,,; a~lI~h.
. 1tU du V [so - u"] L.

(41 )

Introducing (40) into (39) we obtain a second Abel-type integral equation for 1'(.1'); its
solution gives the following (see also the results given by Cooke. 1963):

where

(43)

Making use of (33), the expression for N(~) derived from (34), and (41), we obtain the
following integral equation for 4>(u).

(44)

where



[*(5 t) _ (1-2v): [ ,'J {(' r; __ 1_) 1 __
, - (3 -.h) .," ,2'1 u: -u: (t: -u:) I:

-fC[;;~~~;:fl : - [p~ ~I;:F) [t-:-!i2fi:} [~r;~I)~: dllJ. (~5)

Introducing the transformations

T(s) =
~G~(l-I')
--~-- T*(s),
(J-41')

(46)

the integral equations (44) and (45) can be reduced to a single integral el\uation for T*( ,.):

.I' 4.1' II> [ 1\(.1', t) ]T*(s) =-,--,, +.; .-----" IT*(t) [*(s,t)--'-'j' dl:
[.I" -Irjl, r; [s- -a,)I, ,/ [t' -w) ,

Also, using the suhstitutions

.I' = a Sl'C (-): t = a sec (1/: (sec: c~) F*(II sec Co)) = II(C-).

eqn (47) elll be written in the form

a :s: .I' :s: h.

(~7)

(4X)

II(H) sin C-) cos: H = It 4, j',n '11-,1) 1I(u1)[r(C~.(I/)'. K(C~,ul)1 dt-I: ():.:; C-) ,;;; sec I (ha)
rc II

(~l))

where

- I, ,
1\(0,w) =. ,[sin- w sec (') In:tan (w/2)} -sin- 0 sec 0 In :tan (0/2):]

(sec 0 -sec 1'1)

(50)

_ (1-21')'(/'tan(')[ I {It' IT}
[(0, w) = • (1 - sin 0) - ,

(J -41') (/ tan w 4a 2(/- tan C~ sec 0

J
." (a: -II:) I: dll I'"n'''{I 2p 1 dp -I+ .. .... . ..... .. - .. .... ..... .. ...
" (tr-wsec0) ,/ p[p--trjl, [f,'-wl"! (a"sectu-p")1 '_

(51 )

It may he noted that when Eo) -- (I), K(H,I!J) can he evaluated hy applying L'llospilal's rule.
The integral equation (49) is a Fredholm integral equation of the second-kind for the
function II(Eo). The integral equation (49) can he sohed in a numerical fashion to derive
results of engineering inten:st. In the present paper we shall focus attention on the evalua tion
of the axial load -displacement relationship for the partially honded disc inclusion.

Considering (25), we note that

I' Id{J" }11::(r,O) = ~S(~)J()(~r) d~ = d r N(~)JI(~r) d~ : (/ < r < h.
() r r "

Using (34) and (4\). the ahove result can be reduced to the form

(52)
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2 d ",T! ,) ds
I . u < I' < r.

nrdr,. [s:-r:j':'
(53)

Considering the ax.ial contact stresses at the bl)nded surfal:es of the indusion it is evident
that 11,,(1'.0) = -0'::(1'.0 ) where the negative super"l:ript refer" to the l:ontact stresses at
the surface of the inclusion-elastil: medium interface in l:ontact with the halfspace region
=:( O. Considering the eljuilibrium of the inL'!usion \\e l)htain:

p= -J":' r"[IT::(r.O')-rL:(r.O )]rdrdG.
o J,

Using the results of (46). (-.lg) and (53). (54) can he reduced to the form

32(il\( I _ 1')lI j""" 'If, ."

P = mG) dG.
(3 -41') ,II

4. NUMFRICi\L SOl.(ITIO:\ OF TIlL I:\THiRi\L H)t'\TlO:"

(54)

(55)

In the ensuing we shall present a hricl' summary of the nunh:riGd prol:edures that arc
used to solve the Fredholm integral cquation of the second-kind derived previously. More
l:ompkle al:l:ounls of the various pml:edures that Gill he employed in the solution of this
Gltegory of integral equation arc summari/ed hy Atkinson (1'J7()) and Baker (1977). The
Fredholm integral equation (41» l:an he written in the I'llI'm

1/«-)) sin (-) ws" (-) - 4, J" II((I})[(((-), ('I) .. i:.(-), (I})I d.,) =: I .
n- !l

(56)

where ~ =: cos I (II/h); the fUIKtion K(0.1'}) is dclined by (50). the funl:tion E(G.w) can
he written in the modified form

_ (1-21')'[rr" . ITeos'0
L(0.UJ) = (l-sII10)(I-slnl!J)--. Ct.

(3 - 41') 4 2// Sill \.~

, {' .) ]IT tan- (') l:OS' (-) l:OS- (.) \ tan I:J
+ , , . -. + I,,(sec 0. sec w)

211 (sec (I}-secG) sIn0 Slnl')) II

and the integral fUIKtion 10('X, {f) is given hy

(57)

(58)

In the numerical procedure adopted here, we employ a Gaussian ljuadrature scheme to
solve the integral eljuation (56). Considering ,V Gaussian points. (56) can be reduced to a
matrix. equation of the form

with i.j = 1.2..... N.

I\"H(G,) = I (51))
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where.tl, and i" are, respectively, the points and weights of the quadrature scheme and /(0)
is ohtained from the result Lt [f(G,w) - K((-).w)l; i.e.

(-) "I'}

. (1-2V)~{rr~ ,rrcos~0 tan0 }
j (0) = (I -sin 0)- - . + . lo(sec 0. sec w) .

(3-4\') 4 411 Sill 0 II
(61 )

Upon solution of the matrix equation (5lJ), the relevant load-displacement relationship
(55) can he evaluated in the Jiscreti/ed form

(62)

5. NUMERICAL RESULTS t\:--;() CO:--;CLUSIO:--;S

The numerical technique outlined in the previous section is used to evaluate the axial
load-displacement relationship for the partially dehondcd penny-shaped rigid inclusion
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.:m~.:dJ.:J In an da"lIc inlinit.: 'pac.:. Figun.: ~ illustratt:s th.: mann.:r in which tht: a:'<ial
stitTn.:s,; Ilf th.: ..:mh.:dd..:J indusi,'n is inl1u.:nc.:d h~ th.: .:\tent ,,1' th..: d..:bomkd region and
P"i,;sl'n', rati,' Ilf th..: d~l'lIc ml.'dium. ;\ tlltaillf ~-+ G~IUSS points \\ .:r.: used in th~ numerical
e\aluatil'n. ;\n incr.:a"..: Ill' th..: numb.:r of p0ints from ~-+ h l (1-+ diJ Iwt result in any
appr..:ciahl..: irnprllv.:m..:nts ,11' th..:s..: num..:rical n:'ults. Th.: numaical results also convcrge
t,l th.: e\a..:t dl".:d f,mn r.:sult I'':'': ':.g. Sd\aJurai. 19761 as lLlI,I ...... O: i..:. PG!ih=
)~( 1-1'1 () -.hl. Th.: num.:ri..:al r.: ... ults alsll indicat.: that appn:..:iable changes in the a:'<ial
stitrn.:S' III' th.: J..:honded p.:nny-shap.:d indusilln occur only Ii.'r values of (L1 h) > OA.

Th.: papa llutlin.:s th.: math.:matical analy ... is of the a:'<ial Illading of a penny-shaped
rigid in..:! USi'lll which is ..:mb..:dd..:d in partial ~ondedwntact with an isotropic elastic infinite
spa..:.:. SilK": th.: J.:hll!1ding is aSOium..:J tll h..: 'ynlll1l.'tril-' the infinite space problt:m can be
etr..:cti\·,: n:Jul.·;,:J tll a mix..:d hllundary \·alu..: prohl..:m assOl:iat.:d with .1 halfspace rcgion.
Th.: analysi" l.·an al'll he ext.:mkd tn situatillns in which d.:hll!1ding occurs in a non
symm..:tric 1~l'hilln. Such an analysis how.:n:r requires th..: l·llllsid.:ration of two sets of
mi\ed boundary valu.: prllhl..:ms ror th.: halrspacc regions:: > /I and:: < O. For this case
th..: 'Yllllll..:try l'pnstrainh on II, and fT._ in th..: r..:gion :: > /I: rE (f,. z.) arc n:placed by
cllntinuity cllnditilH1S li.r II,. II-. fT .• and fT,_.

It j, illlp,.rtant to nllt..: that the state or stn:.;s at the hllundary of the rigid inclusion
and at the bllunJary III' the dehllnded rq:illn arc singular. In parti..:ular it is knllwn (Atkinson,
1')7'J) that the ,tres, ,ingularity at th..: hllundary or such dehonJed regions is oscillatory.
Cllll''':l(ul'ntly, In ,ituati'1I1S wha..: th..: ..:\act stre,s di,trihution, or th..: stress intensity I~lctors

at the inner ,khlllHkJ hllundary arc r":l(uired it is n..:cessary tIl p..:rform the analysis by
appeal tll a fllnllulalillll hased lin th..: ffilh..:rt pnlhl..:lll wha..: the e:'<act nature of the
Il'il'illalory,in;!ularity i, invpked. On the other hand. ir the results or primary interest
rocu, Oil thl' l.·\aluatioll or gillhal e,tilllates such as load displal:emellt responses for the
illchhion Ihl:1l thl: illtl:,l!r;1! trall,r,lnll hased schl:me. which is adoJltl'd ill Ihe present paper.
yidd, aCl:m;ll.: rl.·sults. The.iuslilil·atioll lill' this simplifieatioll call hl: provided by examining
thl: a\isYlIlIlll:lric prohkm or thl.' adhl.'siwly hOlHkd pUlleh 011;1 halfspal:e region. It can be
shll\\ll thaI Ih..: stifl'lle", or the pUllch deri\ed via thl.' integral transrorm-based 'Ipproaeh
can be l·\alual..:d to wilhin (I,fl";. llr the e\act solution ror the l.'.\lreme l:ases when v = n.
Whell the mal.:ri;1! i, illcolllprl.'......ihie holh appwaches yield the saml.' n;sull. The methodology
present..:d in thi" paper. therefore. pnl\ ides a u"erul procedure tilr the determination of the
slill'nl.''''''' charadl.'ristics or panially bonded rigid inclu ...illns whi..:h arc emoedded in clastic
m.:dia .

.·kl.lI"" ','.1""111<'11' I II.: w"rk d.:s.:rih.:d IIIll1is pap.:r \\as supllllrt.:d in parI hy a :\,llural S.:i':IIl:':s alill Engin.:.:ring
R.:s.:ar':!. ('''UII,II "f ('anada ()p.:raling (iranl (A.\SIIM awanl.:d h> lh.: lirsl aUlh"r.
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.\1'1. s~:' ~\.~7

Ashhy, \1.1-. 'I'/t'hl. W"rk IIMd.:nlllg "rdisp.:r,i"n-hard.:ncd .:ryslals. Plli/. .\1<1.'1.14.1157 117X.
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APPENDIX A

Consider the full space with regIOn (I) corresponding to : ~ 0 and region (2) corresponding to : ~ O. The
appropriate integral expressions of Love's strain potential for regions (I) and (2) take the forms

(AI)

(A2)

Considering the full space region. the mixed boundary conditions at : = 0, posed by the disbonded inclusion
problem take the following forms.

l1~:I=l1~;I=O; O<r<u

For the region (1) (: > 0) we have

2Gu~"(r,O) = - r~[~A(~)+2(1-2v)B(~»)Jo(~r) d~

O"~:'(r,O) = r~l[~A(~) - 2vB(~))J, (~r) d~.

Similarly for the region (2) (: < 0) we have

(AJ)

(M)

(AS)

(A6)

(A7)

(AM)

(A'J)

(AIO)

(All)

(AI2)

(Al3)

(AI4)

(AIS)

(AI6)
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:(;ti:'jf.Ol ,'" ~1~CU-::'(l-::'\IDj~ilJ,!~rl J~
."

:Ga;:'{f,O) I" ~[DLJ ~~C(~jIJ,'~f) d~
."

!T~:'(f.ll) = C' ~:[.:CU~:\'D(';)jJ,(';r) d~
J"

for the present let us .Issume tl1.1t II~ I, = II~" 1"'1' f '= (0, r, ). Then ffll1l1 1:\ I)) and 1.'\ 17) v\'<: 11,1\"

Using(A2I)andIAl.1) (A20) we have

u'''{f,O) = ti"lf,OJ

1/; "(r,ll) - 1/: :'(f, Il)

!T"'(r,O) C !T':'(f.O)

Using (A22) (t\25), the hourulary conditions (;\1) (AI2) can he reduced to the fnnns

('\ I~l

t.'\ l'il

(,-\20 1

(,·\:1 )

(.\23 )

II'. "(r, 0) ,\ , II' I" " h (A2(»

1/;"(1",0) 0; l/1';.r< t (A27)

,,' "(I', OJ 0 I) <." I' <: 'I (.\2S)

";"(r,Oj 0 0<1'<11 (:\2'1)

17'.," (I', (ll 0, h<r< 1 . (A30 )

These arc exactly the same as the hounJary conditions given in eqns (\») (12) "I' the paper. In "ot~linin~ (A26)
(A.10) we h;,ve assultled that 1/"'11',0) ,~,,':'(r,O) for f"(O, 1.). I'wm /i'd). (A-I) ;,nd (.·\ItJJ we I;Ok that
I/~" (f, 0) 11':' (1',0) for hoth I' C (II, hJ and f C (h, 1 J. COlbequently, the assertion is accurate prn\ Ided

Consider the displaceltlent L\ of the mdusi"ll as shown ill Fig. A I(a). l.et the surf;lces of the dishonded regioll
rE 10,1/) e.vhihit displa,'ements I?" and Ii':' at the respl'CII\C reginns. Whcn Ihe indusjon is dispLlI.:ed as shn" 1\ in
Fig, A I(0) the associatcd surl;,cc displaccmcnts at toe ,leoondeJ regions arc -Ii'." and -Ii',:' Figurc r\ Iic) is
ohtaineJ hy a rigiJ hody rot~llion of Fig, A 1(0), aoout thc x·axis and it may he noted that stl1ce the h;tlfspa<:c
regions (I) and ej arc identical the Jesignations could be interchanged. Consequently I/~" ,i" fnr f':(O,II).

Thus the redul'ed houndary valuc problem pcrtaining to a halfspace regi,ul as dctineu by the rni\ed h'lltl1dary
conditll>lls ('i) (12) in the paper js the complete representation of the full space prohkm.
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( b)

(c)
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hg. t\ I. R~dll~li"lI "I' lh, h"lIl1dary ,,,lidII1"11' arph,ahk to lh, lkhollJ,d illdll,ioll rrohkll1.


